Two-photon laser scanning microscopy of epithelial cell-modulated collagen density in engineered human lung tissue.

نویسندگان

  • A Agarwal
  • M L Coleno
  • V P Wallace
  • W Y Wu
  • C H Sun
  • B J Tromberg
  • S C George
چکیده

Tissue remodeling is a complex process that can occur in response to a wound or injury. In lung tissue, abnormal remodeling can lead to permanent structural changes that are characteristic of important lung diseases such as interstitial pulmonary fibrosis and bronchial asthma. Fibroblast-mediated contraction of three-dimensional collagen gels is considered an in vitro model of tissue contraction and remodeling, and the epithelium is one factor thought to modulate this process. We studied the effects of epithelium on collagen density and contraction using two-photon laser scanning microscopy (TPLSM). TPLSM was used to image autofluorescence of collagen fibers in an engineered tissue model of the human respiratory mucosa -- a three-dimensional co-culture of human lung fibroblasts (CCD-18 lu), denatured type I collagen, and a monolayer of human alveolar epithelial cell line (A549) or human bronchial epithelial cell line (16HBE14o(-)). Tissues were imaged at days 1, 8, and 15 at 10 depths within the tissue. Gel contraction was measured concurrently with TPLSM imaging. Image analysis shows that gels without an epithelium had the fastest rate of decay of fluorescent signal, corresponding to highest collagen density. Results of the gel contraction assay show that gels without an epithelium also had the highest degree of contraction (19.8% +/- 4.0%). We conclude that epithelial cells modulate collagen density and contraction of engineered human lung tissue, and TPLSM is an effective tool to investigate this phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy

Background  To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...

متن کامل

Evaluation of silica nanoparticles cytotoxicity (20-40 nm) on cancerous epithelial cell (A549) and fibroblasts cells of human normal lung fibroblast (MRC5)

Introduction: Silica nanoparticles have received more attraction in medical and industrial applications due to their unique properties such as small size, the possibility of surface functionalization, ease of production, and low cost. So, it is necessary to study the respiratory toxicity of occupational exposure due to the production and increasing use of silica nanoparticles, especially in the...

متن کامل

Collagen reorganization at the tumor-stromal interface facilitates local invasion

BACKGROUND Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interaction...

متن کامل

Preliminary experimental study of urethral reconstruction with tissue engineering and RNA interference techniques.

This study investigated the feasibility of replacing urinary epithelial cells with oral keratinocytes and transforming growth factor-β1 (TGF-β1) small interfering RNA (siRNA)-transfected fibroblasts seeded on bladder acellular matrix graft (BAMG) in order to reconstruct tissue-engineered urethra. Constructed siRNAs, which expressed plasmids targeting TGF-β1, were transfected into rabbit fibrobl...

متن کامل

Quantification of Collagen Orientation in 3D Engineered Tissue

Tissue engineered heart valves are a promising alternative for current heart valve replacements. However, the mechanical properties of these valves are insufficient for implantation at the aortic position [1]. Collagen orientation is important to improve the mechanical properties of tissue engineered valves. Two-photon laser-scanning microscopy allows us to study the influence of strain on coll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2001